Convection-diffusion equation have a wide range of applications in many practical engineering problems, such as magnetic confinement fusion problems, heat transfer, particle diffusion. Traditional solutionof convection-diffusion equation in magnetic confinement fusion is Crank-Nicolson scheme. This paper presents a new numerical solution of one-dimensional steady-containing source convection diffusion equation high accuracy difference schemes O(t2+h4), which proved to be unconditionally stable using Fourier analysis, numerical experiments show the accuracy and robustness of this format, this scheme has a higher accuracy.
Published in | Science Discovery (Volume 4, Issue 2) |
DOI | 10.11648/j.sd.20160402.27 |
Page(s) | 156-160 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Convection-Diffusion Equation, Compact Difference, High Order
[1] | 王慧蓉.求解对流扩散方程的紧致二级四阶Runge-Kutta差分格式[J].云南民族大学学报:自然科学版,2015,24(5):382-385。 |
[2] | 杨志峰.含源汇定常对流扩散问题紧致四阶差分格式[J].科学通报,1991,38(2):113-116。 |
[3] | 孙志忠.偏微分方程数值解法[M].北京:科学出版社,2005。 |
[4] | 钱凌志,顾海波.高阶紧致差分格式结合外推技巧求解对流扩散方程[J].山东大学学报:理学版,2011,46(12):39-43。 |
[5] | 张阳.线性对流占优扩散问题的交替方向差分流线扩散法[J].计算数学,2007,29(1):49-66。 |
[6] | 何文平.求解对流扩散方程的四中差分格式的比较[J].物理学报,2004.(10):3258-3264。 |
[7] | 王倩倩,李鑫,孙启航.一维变系数对流扩散方程的一个紧致差分格式.江苏师范大学学报:自然科学版,2013,31(2):21-24。 |
[8] | 王彩华.一维对流扩散方程的一类新型高精度紧致差分格式[J].水动力学研究与进展:A辑,2004,(19):655。 |
[9] | 戴嘉尊.微分方程数值解法[M].2版.南京:东南大学出版社,2004。 |
[10] | Patanker S V. Numerical heat transfer and fluid flow [M]. New York: Hemisphere Publishing Corporation, 1980. |
APA Style
Rongfei Wang, Weihua Wang, Jinhong Yang. (2016). Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation. Science Discovery, 4(2), 156-160. https://doi.org/10.11648/j.sd.20160402.27
ACS Style
Rongfei Wang; Weihua Wang; Jinhong Yang. Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation. Sci. Discov. 2016, 4(2), 156-160. doi: 10.11648/j.sd.20160402.27
AMA Style
Rongfei Wang, Weihua Wang, Jinhong Yang. Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation. Sci Discov. 2016;4(2):156-160. doi: 10.11648/j.sd.20160402.27
@article{10.11648/j.sd.20160402.27, author = {Rongfei Wang and Weihua Wang and Jinhong Yang}, title = {Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation}, journal = {Science Discovery}, volume = {4}, number = {2}, pages = {156-160}, doi = {10.11648/j.sd.20160402.27}, url = {https://doi.org/10.11648/j.sd.20160402.27}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sd.20160402.27}, abstract = {Convection-diffusion equation have a wide range of applications in many practical engineering problems, such as magnetic confinement fusion problems, heat transfer, particle diffusion. Traditional solutionof convection-diffusion equation in magnetic confinement fusion is Crank-Nicolson scheme. This paper presents a new numerical solution of one-dimensional steady-containing source convection diffusion equation high accuracy difference schemes O(t2+h4), which proved to be unconditionally stable using Fourier analysis, numerical experiments show the accuracy and robustness of this format, this scheme has a higher accuracy.}, year = {2016} }
TY - JOUR T1 - Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation AU - Rongfei Wang AU - Weihua Wang AU - Jinhong Yang Y1 - 2016/06/12 PY - 2016 N1 - https://doi.org/10.11648/j.sd.20160402.27 DO - 10.11648/j.sd.20160402.27 T2 - Science Discovery JF - Science Discovery JO - Science Discovery SP - 156 EP - 160 PB - Science Publishing Group SN - 2331-0650 UR - https://doi.org/10.11648/j.sd.20160402.27 AB - Convection-diffusion equation have a wide range of applications in many practical engineering problems, such as magnetic confinement fusion problems, heat transfer, particle diffusion. Traditional solutionof convection-diffusion equation in magnetic confinement fusion is Crank-Nicolson scheme. This paper presents a new numerical solution of one-dimensional steady-containing source convection diffusion equation high accuracy difference schemes O(t2+h4), which proved to be unconditionally stable using Fourier analysis, numerical experiments show the accuracy and robustness of this format, this scheme has a higher accuracy. VL - 4 IS - 2 ER -