This paper propose a new electro-thermal model nd presents a method of studying the thermal phenomena in power MOSFET transistors, utilizing Advanced Design System techniques by a Symbolic Defined Device (SDD). The model incorporates the thermal effects and the temperature evolution in the device and captures the heat dissipation from the silicon chip to the ambient air by providing three thermal capacitances and three thermal resistances (thermal network). It enables a better estimation of the device’s reliability and lifetime. Furthermore, it can be used to make a connection between the electrical parameter drifts and the existing failures types. The developed model reflects superior performance in terms of accuracy and flexibility and the results obtained indicate a good agreement with the operating conditions.
Published in | Journal of Electrical and Electronic Engineering (Volume 3, Issue 6) |
DOI | 10.11648/j.jeee.20150306.13 |
Page(s) | 192-197 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Modelling, Electro-Thermal, Power MOSFET, Temperature, Self-Heating, Thermal Network
[1] | Z. Radivojevic, K. Andresson, J. A. Bielen, P. J. van der Wel, J. Rantala, “Operating limits for power amplifiers at high junction temperatures,” Microelectronics Reliability. 44 (2004) 963-972. |
[2] | Juraj Marek, Ales Chvála, Daniel Donoval, Patrik Príbytný, Marián Molnár, Miroslav Mikolášek, “Compact model of power MOSFET with temperature dependent Cauer RC network for more accurate thermal simulations,” Solid-State Electronics 2014, Volume 94, pp. 44–50. |
[3] | M. Riccioa, A. Castellazzib, G. De Falcoa, A. Irace, “Experimental analysis of electro-thermal instability in SiC Power MOSFETs,” Microelectronics Reliability 2013, volume 53, pp. 1739–1744. |
[4] | C. Kun-Ming, H. Guo-Wei, W. Sheng-Chun, Y. Wen-Kuan, F. Yean-Kuen, Y. Fu-Liang, Characterization and modelling of SOI varactors at various temperatures, IEEE Trans. Electron Devices. 51 (3) (2004) 415-420. |
[5] | M.N. Sabry, W. Fikry, K. Abdel Salam, M. M. Awad and A. E. Nasser, A lumped transient thermal model for self-heating in MOSFETs, Microelectronics Journal. 32 (2001) 847-853. |
[6] | M. Miller, T. Dinh, E. Shumate, “A new empirical large signal model for silicon RF LDMOSFET’s,” IEEE MTT-S Technol. Wireless Applicat. Dig. (1997) 19-22. |
[7] | I. Angelov, N. Rorsman, J. Stenarson, M. Garcia, H. Zirath, “An empirical table-based model,” IEEE Trans. Microwave Theory Tech. 47 (1999) 2350-2357. |
[8] | Y. Yang, Y.Y. Woo, J. Yi, B. Kim, “A new empirical Large-Signal model of Si LDMOSFETs for High-power amplifier design,” IEEE Trans. Microwave Theory Tech, 49 (9) (2001) 1626-1633. |
[9] | Motorola on line, “Motorola’s Electro Thermal (MET) LDMOS Model MosnldMet”, 2003. |
[10] | M. A. Belaïd, H. Maanane, K. Mourgues, M. Masmoudi, K. Ketata, et J. Marcon, “Characterization and Modelling of Power RF LDMOS Transistor Including Self-Heating Effects,” 16th Int. Conf. Microelectronics (IEEE), Tunis, Tunisie (2004), 262-265. |
[11] | Y. Yang, Y. Y. Woo, J. Yi, B. Kim, “A New Empirical Large-Signal Model of Si LDMOSFETs for High-Power Amplifier Design,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1626-33, Sep. 2001. |
[12] | D. Moncoqut, “Propriétés physiques et modélisation du transistor de puissance LDMOS,” Thèse de doctorat, Université Paul Sabatier de Toulouse, Octobre 1997. |
[13] | P. Aloïsi, “Les semiconducteurs de puissance de la physique du solide aux applications,” Ellipses édition marketing S.A., 2001. |
[14] | M. A. Belaïd, K. Ketata, K. Mourgues, H. Maanane, M. Masmoudi, J. Marcon, “Comparative analysis of accelerated ageing effects on power RF LDMOS reliability,” Microelectronics Reliability, vol. 45, pp. 1732–1737, 2005. |
[15] | M. A. Belaïd, “Contribution à l'analyse des dégradations d'origine thermique et des interactions électrothermiques dans les dispositifs LDMOS RF de puissance,” Thèse de doctorat, Université de Rouen, décembre 2006. |
[16] | B.J. Baliga, Modern Power Devices, General Electric Company Schenectady, John Wiley & Sons, 1987. |
[17] | M.A. Belaïd et al, “Analysis and Simulation of Self-Heating Effects on RF LDMOS Devices”, in Proc. SISPAD (IEEE), Tokyo, 2005. |
[18] | H. A. Jayatissa, L. Zhiyu, Effect of temperature on capacitance-voltage characteristics of SOI, Materials Science and Engineering B, (2005) 331-334. |
[19] | M. Tlig et al, Conducted and radiated EMI evolution of power RF N-LDMOS after accelerated ageing tests, Microelectronics Reliability, 2013, pp. 1793–97. |
[20] | M.A. Belaı¨d *, K. Ketata, M. Gares, J. Marcon, K. Mourgues, M. Masmoudi, 2-D simulation and analysis of temperature effects on electrical parameters degradation of power RF LDMOS device, Nuclear Instruments and Methods in Physics Research B, 2006, pp. 250–25. |
APA Style
Mohamed Ali Belaïd, Ahmed Mohammad Nahhas, Momamed Masmoudi. (2015). A Compact Model of Mosfet Transistors Including Dispersion and Thermal Phenomena. Journal of Electrical and Electronic Engineering, 3(6), 192-197. https://doi.org/10.11648/j.jeee.20150306.13
ACS Style
Mohamed Ali Belaïd; Ahmed Mohammad Nahhas; Momamed Masmoudi. A Compact Model of Mosfet Transistors Including Dispersion and Thermal Phenomena. J. Electr. Electron. Eng. 2015, 3(6), 192-197. doi: 10.11648/j.jeee.20150306.13
AMA Style
Mohamed Ali Belaïd, Ahmed Mohammad Nahhas, Momamed Masmoudi. A Compact Model of Mosfet Transistors Including Dispersion and Thermal Phenomena. J Electr Electron Eng. 2015;3(6):192-197. doi: 10.11648/j.jeee.20150306.13
@article{10.11648/j.jeee.20150306.13, author = {Mohamed Ali Belaïd and Ahmed Mohammad Nahhas and Momamed Masmoudi}, title = {A Compact Model of Mosfet Transistors Including Dispersion and Thermal Phenomena}, journal = {Journal of Electrical and Electronic Engineering}, volume = {3}, number = {6}, pages = {192-197}, doi = {10.11648/j.jeee.20150306.13}, url = {https://doi.org/10.11648/j.jeee.20150306.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jeee.20150306.13}, abstract = {This paper propose a new electro-thermal model nd presents a method of studying the thermal phenomena in power MOSFET transistors, utilizing Advanced Design System techniques by a Symbolic Defined Device (SDD). The model incorporates the thermal effects and the temperature evolution in the device and captures the heat dissipation from the silicon chip to the ambient air by providing three thermal capacitances and three thermal resistances (thermal network). It enables a better estimation of the device’s reliability and lifetime. Furthermore, it can be used to make a connection between the electrical parameter drifts and the existing failures types. The developed model reflects superior performance in terms of accuracy and flexibility and the results obtained indicate a good agreement with the operating conditions.}, year = {2015} }
TY - JOUR T1 - A Compact Model of Mosfet Transistors Including Dispersion and Thermal Phenomena AU - Mohamed Ali Belaïd AU - Ahmed Mohammad Nahhas AU - Momamed Masmoudi Y1 - 2015/12/07 PY - 2015 N1 - https://doi.org/10.11648/j.jeee.20150306.13 DO - 10.11648/j.jeee.20150306.13 T2 - Journal of Electrical and Electronic Engineering JF - Journal of Electrical and Electronic Engineering JO - Journal of Electrical and Electronic Engineering SP - 192 EP - 197 PB - Science Publishing Group SN - 2329-1605 UR - https://doi.org/10.11648/j.jeee.20150306.13 AB - This paper propose a new electro-thermal model nd presents a method of studying the thermal phenomena in power MOSFET transistors, utilizing Advanced Design System techniques by a Symbolic Defined Device (SDD). The model incorporates the thermal effects and the temperature evolution in the device and captures the heat dissipation from the silicon chip to the ambient air by providing three thermal capacitances and three thermal resistances (thermal network). It enables a better estimation of the device’s reliability and lifetime. Furthermore, it can be used to make a connection between the electrical parameter drifts and the existing failures types. The developed model reflects superior performance in terms of accuracy and flexibility and the results obtained indicate a good agreement with the operating conditions. VL - 3 IS - 6 ER -