We propose the Bethe-Salpeter-like amplitude of spin operator in spin space and consider that the vibration of this spin operator amplitude causes the vibration in azimuthal angle space, which causes the anomalous magnetic moment of leptons and generates masses of flavor state neutrino. Under this consideration, we can estimate neutrino masses using anomalous magnetic moment of leptons instead of using conventional seesaw mechanism. Electron anomalous magnetic moment and muon anomalous magnetic moment have been measured precisely so that we can estimate the masses of electron and muon neutrino systemically in our consideration. For tau neutrino mass case, we cannot estimate it in our consideration because tauon anomalous magnetic moment has not been measured. Instead, we use the squared mass splitting data to estimate tau neutrino mass in this paper. These are not mass eigenstates masses but flavor states masses, however, the sum of these masses, which should be equal to the sum of mass eigen states masses, is consistent to the current upper and lower bound of the sum of neutrino masses for both cases of normal hierarchy and inverted hierarchy.
Published in | International Journal of High Energy Physics (Volume 6, Issue 2) |
DOI | 10.11648/j.ijhep.20190602.14 |
Page(s) | 54-60 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Beth-Salpeter-like Amplitude, Spin Operator, Neutrino Mass
[1] | Fukuda Y et al. Phys. Rev. Lett. 81, 1562-1567 (1998). |
[2] | Ahmad Q. R. et al. Phys. Rev. Lett. 89, 011301 (2002). |
[3] | Araki T. et al. Phys. Rev. Lett. 94, 081801 (2005). |
[4] | Adamson P. et al. Phys. Rev. Lett. 101, 131802 (2008). |
[5] | Ahn J. K. et al. Phys. Rev. Lett. 108, 191802 (2012). |
[6] | Abe K. et al. Phys. Rev. Lett. 112, 061802 (2014). |
[7] | Loureiro A. et al. Phys. Rev. Lett. 123, 081301 (2019). |
[8] | Barabash A. S. Int. J. Mod. Phys. A 33, 1843001 (2018). |
[9] | Dolinski M. J., Poon A. W., and Rodejohann W. Ann. Rev. Nuclear and particle Science 69, (2019). |
[10] | Otten E. W. and Weinheimer C. Rep. Prog. Phys. 71, 086201 (2008). |
[11] | Drexlin G., Hannen V., Mertens S., and Weinheimer C. Adv. High Energy Phys. 2013 (2013). |
[12] | Gastaldo et al. Eur. Phys. J. ST. 226, 1623 (2017). |
[13] | Nicciot A. Adv. High Energy Phys. 2016, 9153024 (2016). |
[14] | Aker M et al., arXiv: 1909.06048vl 13 Sep 2019. |
[15] | Minkovski P. Phys. Lett. B 67, 421 (1977). |
[16] | Yanagida T. Conf. Proc. C79023131, 95 (1979). |
[17] | Gell-mann M., Ramond P., and Stansky R., Conf. Proc. C790927, 315 (1979). |
[18] | Mohaparta R. N. and Senjanvic G., Phys. Rev. Lett. 44, 912 (1981). |
[19] | Glashow S. L., 1980 NATO adv. Study Inst. Ser. B Phys. 59, 687 (1980). |
[20] | Morisi S. and Peinad E., Phys. Rev. D 80, 113011 (2009). |
[21] | Morisi S, Peinad E. Shimizu Y. and Valle J. W., Phys. Rev. D 84, 036003 (2011). |
[22] | Suura H., Phys. Re. D 17, 469 (1978). |
[23] | Suura H. Phys. Rev. D 20, 1429 (1979). |
[24] | Kurai T. Results in Phys, 10. 865-881 (2018). |
[25] | Moriguch S, Udagawa K. and Hitotsumatsu S., Formula of Mathematics III; Special Functions, Iwanami (1975). |
[26] | Weinberg S., Quantum Theory of Fields (III), Cambridge Univ. Press (2000). |
[27] | Tomonaga S., The story of spin, Univ. of Chicago Press (1998). |
[28] | Hanneke D., Fogwell Hoogerheide S. and Gabrielse G., Phys. Rev. A 83 (5), 052122 (2011). |
[29] | Palrignani C. and Agahe K., Chinese Phys. C IOP Publishing 40 (10), 100001 (2016). |
[30] | Gonzalez M. C., Maltoni M. and Schwez T., J. High Energy Phys. 52 (2014). |
[31] | Hannestad S. and Schwez T., J. Cosmol. Astropart. Phys. 11,035 (2016). |
[32] | Choudhury S. R. and Choubey S., J. Cosmol. Astropart. Phys. 2018, 017 (2018). |
[33] | Long A. J., Raveri M., Hu W. and Dodelson S., Phys. Rev. D 97, 043510 (2018). |
[34] | Gariazzo S., Archidiacono M., de Salas P. F., Mena O., Ternes C. A., and Tortola M., J. Cosmol. Astropart. Phys. 2018, 011 (2018). |
[35] | Helo J. C., Hirsch M., and Kovalenko S., Phys. Rev. D 89, 073005 (20149 [Erratum: Phys. Rev. D 93, no. 9, 099902 (2016)]. |
[36] | Blondel A., Graverini E., Serra N., et al. (FCC-ee study Team), Nucl. Part. Phys. Proc. 273-275, 1883 (2016). |
[37] | Cui Y., and Shuve B., JHEP 02, 049 (2015). |
[38] | Gago A. M., Hernandez P., Jones-Perez J., et al. Eur Phys. J. C 75, 10, 475, (2015). |
[39] | Duarte L., Peressetti J., and Sampayo O. A., J. Phys. G 45, 2, 025001 (2018). |
[40] | Antush S., Cazzato E., and Fischer O., JHEP 12, 007, (2016). |
[41] | Caputo A., Hernendez P., Lopez-Pavon J., et al. JHEP 06, 112 (2017). |
[42] | Antush S., Cazzato E., and Fischer O., Phys. Lett. B 774, 114 (2017). |
[43] | Hernandez P., Jones-Perez J., and Suanrez-Navarro O., Eur. Phys. J. C 79, 3, 220 (2019). |
[44] | Lindner M., Ohlsson T., and Seidl G., arXiv: hep-ph/0109264v2 17 Nov 2001. |
[45] | Donini A., Hernandez P., and Lopez-Pavon J., JHEP 07, 161 (2012). |
APA Style
Teruo Kurai. (2019). Estimation of Neutrino Masses Without Using Seesaw Mechanism. International Journal of High Energy Physics, 6(2), 54-60. https://doi.org/10.11648/j.ijhep.20190602.14
ACS Style
Teruo Kurai. Estimation of Neutrino Masses Without Using Seesaw Mechanism. Int. J. High Energy Phys. 2019, 6(2), 54-60. doi: 10.11648/j.ijhep.20190602.14
AMA Style
Teruo Kurai. Estimation of Neutrino Masses Without Using Seesaw Mechanism. Int J High Energy Phys. 2019;6(2):54-60. doi: 10.11648/j.ijhep.20190602.14
@article{10.11648/j.ijhep.20190602.14, author = {Teruo Kurai}, title = {Estimation of Neutrino Masses Without Using Seesaw Mechanism}, journal = {International Journal of High Energy Physics}, volume = {6}, number = {2}, pages = {54-60}, doi = {10.11648/j.ijhep.20190602.14}, url = {https://doi.org/10.11648/j.ijhep.20190602.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijhep.20190602.14}, abstract = {We propose the Bethe-Salpeter-like amplitude of spin operator in spin space and consider that the vibration of this spin operator amplitude causes the vibration in azimuthal angle space, which causes the anomalous magnetic moment of leptons and generates masses of flavor state neutrino. Under this consideration, we can estimate neutrino masses using anomalous magnetic moment of leptons instead of using conventional seesaw mechanism. Electron anomalous magnetic moment and muon anomalous magnetic moment have been measured precisely so that we can estimate the masses of electron and muon neutrino systemically in our consideration. For tau neutrino mass case, we cannot estimate it in our consideration because tauon anomalous magnetic moment has not been measured. Instead, we use the squared mass splitting data to estimate tau neutrino mass in this paper. These are not mass eigenstates masses but flavor states masses, however, the sum of these masses, which should be equal to the sum of mass eigen states masses, is consistent to the current upper and lower bound of the sum of neutrino masses for both cases of normal hierarchy and inverted hierarchy.}, year = {2019} }
TY - JOUR T1 - Estimation of Neutrino Masses Without Using Seesaw Mechanism AU - Teruo Kurai Y1 - 2019/12/24 PY - 2019 N1 - https://doi.org/10.11648/j.ijhep.20190602.14 DO - 10.11648/j.ijhep.20190602.14 T2 - International Journal of High Energy Physics JF - International Journal of High Energy Physics JO - International Journal of High Energy Physics SP - 54 EP - 60 PB - Science Publishing Group SN - 2376-7448 UR - https://doi.org/10.11648/j.ijhep.20190602.14 AB - We propose the Bethe-Salpeter-like amplitude of spin operator in spin space and consider that the vibration of this spin operator amplitude causes the vibration in azimuthal angle space, which causes the anomalous magnetic moment of leptons and generates masses of flavor state neutrino. Under this consideration, we can estimate neutrino masses using anomalous magnetic moment of leptons instead of using conventional seesaw mechanism. Electron anomalous magnetic moment and muon anomalous magnetic moment have been measured precisely so that we can estimate the masses of electron and muon neutrino systemically in our consideration. For tau neutrino mass case, we cannot estimate it in our consideration because tauon anomalous magnetic moment has not been measured. Instead, we use the squared mass splitting data to estimate tau neutrino mass in this paper. These are not mass eigenstates masses but flavor states masses, however, the sum of these masses, which should be equal to the sum of mass eigen states masses, is consistent to the current upper and lower bound of the sum of neutrino masses for both cases of normal hierarchy and inverted hierarchy. VL - 6 IS - 2 ER -