Based on pioneering works by Sciama and Kibble to extend Einstein-Cartan theory of gravity we give a new derivation for the cosmic energy density. It is argued that the ‘t Hooft-Veltman and Wilson method of renormalization implies the relativity of fractal spacetime at the quantum scale and a dark energy density of E(D) = 95.5 percent. It is further revealed that similar conclusions could be made using A.C. Eringen’s nonlocal elasticity. Finally the wider philosophical implication of the theory is discussed.
Published in | American Journal of Modern Physics (Volume 3, Issue 2) |
DOI | 10.11648/j.ajmp.20140302.17 |
Page(s) | 82-87 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Kibble Gravity, ‘t Hooft Fractal Spacetime, Dimensional Regularization, Wilson Renormalization, Cosmic Dark Energy, Sciama-Kibble gravity, Cantorian Spacetime, nonlocal elasticity, Cantorian philosophy of science
[1] | E.V. Linder, Resource Letter: Dark energy and accelerating universe. arXiv: 0705.4102V1[astro-ph]28May 2007. |
[2] | S. Perlmutter and B. Schmidt, Measuring cosmology with supernova. arXiv: astro-ph/0303428V1 18 Mar 2003. |
[3] | E.V. Linder, Einstein’s other gravity and the acceleration of the universe. arXiv: 1005.3039V2[astro-hy.co] 26 August 2010. |
[4] | M.S. El Naschie, A resolution of cosmic dark energy via a quantum entanglement relativity theory. J. Quantum Info. Sci., Vol. 3(1), 2013, pp. 23-26. |
[5] | M.S. El Naschie, Quantum gravity and dark energy via a new Planck scale. Fractal Spacetime & Noncommutative Geometry in Quantum & High Energy Phys., Vol. 3(2), 2013, pp. 106-119. |
[6] | M.S. El Naschie, Dark energy via a quantum field theory in curved spacetime. J. Mod. Phys. & Appli., Vol. 1, 2014, pp. 1-7. |
[7] | M.S. El Naschie, From Yang-Mills photon in curved spacetime to dark energy density. J. Quantum Info. Sci., Vol. 3(4), 2013, pp. 121-126. |
[8] | L. Marek-Crnjac et al, Chaotic fractal tiling for the missing dark energy and Veneziano model. Appl. Math., Vol. 4(11B), 2013, pp. 22-29. |
[9] | M.S. El Naschie, A Rindler-KAM spacetime geometry and scaling the Planck scale solves quantum relativity and explains dark energy. Int. J. of Astronomy and Astrophysics, Vol. 3(4), 2013, pp. 483-493. |
[10] | M.S. El Naschie, Experimentally based theoretical arguments that Unruh’s temperature, Hawking’s vacuum fluctuation and Rindler’s wedge are physically real. American J. Mod. Phys., Vol. 2(6), 2013, pp. 357-361. |
[11] | L. Marek-Crnjac and Ji-Huan He, An invitation to El Naschie’s theory of Cantorian spacetime and dark energy. Int. J. of Astron. & Astrophys., Vol. 3, 2013, pp. 464-471. |
[12] | L. Marek-Crnjac. and M.S. El Naschie, Quantum gravity and dark energy using fractal Planck scaling. J. Mod. Phys., Vol. 4(11A), 2013, pp. 31-38. |
[13] | T.W.B. Kibble, Lorentz invariance and the gravitational field. J. Math. Phys., Vol.2, 212 1961, pp. 212-221. |
[14] | F. Hehl, Space-Time as Generalized Cosserat Coninuum. In “Mechanics of Generalized Continua”. Editor E. Kronev., Springer Verlag, Berlin 1968. pp. 347-349. |
[15] | A. Einstein, Auf die Riemann-Metrik und den Fern-Parallelismus gegründete einheitliche Feldtheorie. Mathematische Annalen, Vol. 102, 1930, pp. 685-697. |
[16] | E. Cartan, Notice historique sur la notion de parallelism absolu. Mathematische Annalen, Vol. 102, 1930, pp. 698-706. |
[17] | E. Cosserat, and F. Cosserat, Théorie des corps déformables. Hermann, Paris 1909. |
[18] | M. Blagojevic and M. Vasilic, Asymptotic symmetry and conserved quantities in the Poincaré gauge theory of gravity. Classical & Quantum Gravity, Vol. 5, 1988, pp. 1241-1257. |
[19] | J. Burnett, Olga Chervova and Dmitri Vassiliev, Dirac equation as a special case of Cosserat elasticity. arXiv: 0812.3948V1[gr-qc]22 December 2008. |
[20] | M.S. El Naschie, Nash embedding of Witten’s M-theory and the Hawking-Hartle quantum wave of dark energy. J. Mod. Phys., Vol. 4, 2013, pp. 1417-1428. |
[21] | M.S. El Naschie, Ji-Huan He, S. Nada, L. Marek-Crnjac and M.A. Helal, Golden mean computer for high energy physics, Fractal Spacetime and Noncommutative Geometry in High Energy Phys., Vol. 2(2), 2012, pp. 80-92. |
[22] | Ji-Huan He, Transfinite Physics. A collection of publications on E-infinity Cantorian spacetime theory. China Scientific & Cultural Publishing. ISBN 988-9 8846-5-8 2005. |
[23] | M.J. Duff: M.J.: The World in Eleven Dimensions. Inst. of Phys. Publications, Bristol 1999. |
[24] | E. Witten, 2 + 1 dimensional gravity as an exactly soluble system. Nucl. Phys. B. Vol. 311(1), 1988, pp. 46-78. |
[25] | D. Kutasov and N. Seiberg, Number of degrees of freedom, density of states and tachyons in string theory and CFT. Nucl. Phys. B, Vol. 358(3), 1991, pp. 600-618. |
[26] | M.S. El Naschie, On two new fuzzy Kähler manifolds, Klein modular space and ‘t Hooft holographic principles. Chaos, Solitons & Fractals, Vol. 29(4), 2006, pp. 876-881. |
[27] | G. ‘t Hooft, A Confrontation With Infinity. In ‘Frontiers of Fundamental Physics’ 4. Editors B. Sidharth and M. Altaisky. Kluwer-Plenum, New York 2001, pp. 1-12. |
[28] | M.S. El Naschie, ‘t Hooft’s dimensional regularization implies transfinite Heterotic string theory and dimensional transmutation. In ‘Frontiers of Fundamental Physics’ 4. Editors B. Sidharth and M. Altaisky. Kluwer-Plenum, New York 2001, pp. 81-86. |
[29] | K.G. Wilson, Critical phenomena in 3.99 dimensions. Physica, Vol. 73, 1974, pp. 119-128. |
[30] | K.G. Wilson, The renormalization group and the expansion. Phs. Reports, Vol. 12(2), 1974, pp. 75-200. |
[31] | M.S. El Naschie, COBE satellite measurement, hyperspheres, super strings and the dimension of spacetime. Chaos, Solitons & Fractals, Vol. 9(8), 1998, pp. 1445-1471 . |
[32] | M. Kaku, Introduction to Superstrings and M-Theory. Springer, New York 1999. |
[33] | M.S. El Naschie et al: On the need for fractal logic in high energy quantum physics. Int. J. Mod. Nonlinear Theory & Application. Vol. 1(3), 2012, pp. 84-92. |
[34] | Challamel, N., Wang, C.M. and Elishakoff, I.: Discrete systems behave as nonlocal structural elements; bending buckling and vibration analysis. Euro. J. Mech. A/Solids, Vol. 44, 2014, pp. 125-135. |
[35] | El Naschie, M.S.: Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw Hill Int. Edi tions Civil Eng. Series., London, Tokyo (1990). |
[36] | Wifi, A.S., El Naschie, M.S., Al Athel, S., Wu, C.W. and Obeid, K.: Coluterized stress and stability analysis of engi neering structures. King Abdulaziz City for Science and Tech. Publishing, Saudi Arabia, No. 21. (96 pages with Arabic translation of summary). |
[37] | Eringen, A.C. and Edelen, D.G.: On nonlocal elasticity. Int. J. Eng. Sci., Vol. 10(3), 1972, pp. 233-248. |
[38] | El Naschie, M.S.: Cosmic dark energy density from classical mechanics and seemingly redundant Riemannian infitely many tensor components of Einstein’s general relativity. World J. Mech. 2014. In press. |
[39] | El Naschie, M.S.: Pinched material Einstein spacetime pro duces accelerated cosmic expansion. Int. J. Astron. & Astrophys. Vol. 4(1), 2014 pp. 80-90. |
[40] | El Naschie, M.S. and Helal, A.: Dark energy explained via the Hawking-Hartle quantum wave and the topology of cosmic crystallography. Int. J. Astronomy & Astrophys., Vol. 3(3), 2013, pp. 318-343. |
[41] | El Naschie, M.S.: Cosmic dark energy from ‘t Hooft’s di mensional regularization and Witten’s topological quantum field pure gravity. J. of Qant. Info. Sci., 2014. In press. |
[42] | El Naschie, M.S.: Why E is not equal to mc2. J. of Modern Phys. In press. (2014). |
[43] | El Naschie, M.S., Marek-Crnjac, L., Hela, M.A. and He, Ji-Huan: A topological Magueijo-Smolin varying speed of light theory, the accelerated cosmic expansion and the dark energy of pure gravity. Appl. Math. 2014. In Press. |
[44] | El Naschie, M.S.: The meta energy of dark energy. Open J. of Philosophy, (2014). In press. |
[45] | El Naschie, M.S.: Einstein’s general relativity and pure grav ity in a Cosserat and de Sitter-Witten spacetime setting as the explanation of dark energy and cosmic accelerated ex pansion. Int. J. Astron. & Astrophys. 2014. In press. |
[46] | Heisenberg, W.: Der Teil und das Ganze. Piper, Munich (1969). |
[47] | El Naschie, M.S.: A review of E-infinity and the mass spec trum of high energy particle physics. Chaos, Solitons & Fractals, Vol. 19(1), 2004, pp. 209-236. |
APA Style
Mohamed S. El Naschie. (2014). Cosserat-Cartan Modification of Einstein-Riemann Relativity and Cosmic Dark Energy Density. American Journal of Modern Physics, 3(2), 82-87. https://doi.org/10.11648/j.ajmp.20140302.17
ACS Style
Mohamed S. El Naschie. Cosserat-Cartan Modification of Einstein-Riemann Relativity and Cosmic Dark Energy Density. Am. J. Mod. Phys. 2014, 3(2), 82-87. doi: 10.11648/j.ajmp.20140302.17
AMA Style
Mohamed S. El Naschie. Cosserat-Cartan Modification of Einstein-Riemann Relativity and Cosmic Dark Energy Density. Am J Mod Phys. 2014;3(2):82-87. doi: 10.11648/j.ajmp.20140302.17
@article{10.11648/j.ajmp.20140302.17, author = {Mohamed S. El Naschie}, title = {Cosserat-Cartan Modification of Einstein-Riemann Relativity and Cosmic Dark Energy Density}, journal = {American Journal of Modern Physics}, volume = {3}, number = {2}, pages = {82-87}, doi = {10.11648/j.ajmp.20140302.17}, url = {https://doi.org/10.11648/j.ajmp.20140302.17}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20140302.17}, abstract = {Based on pioneering works by Sciama and Kibble to extend Einstein-Cartan theory of gravity we give a new derivation for the cosmic energy density. It is argued that the ‘t Hooft-Veltman and Wilson method of renormalization implies the relativity of fractal spacetime at the quantum scale and a dark energy density of E(D) = 95.5 percent. It is further revealed that similar conclusions could be made using A.C. Eringen’s nonlocal elasticity. Finally the wider philosophical implication of the theory is discussed.}, year = {2014} }
TY - JOUR T1 - Cosserat-Cartan Modification of Einstein-Riemann Relativity and Cosmic Dark Energy Density AU - Mohamed S. El Naschie Y1 - 2014/04/10 PY - 2014 N1 - https://doi.org/10.11648/j.ajmp.20140302.17 DO - 10.11648/j.ajmp.20140302.17 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 82 EP - 87 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20140302.17 AB - Based on pioneering works by Sciama and Kibble to extend Einstein-Cartan theory of gravity we give a new derivation for the cosmic energy density. It is argued that the ‘t Hooft-Veltman and Wilson method of renormalization implies the relativity of fractal spacetime at the quantum scale and a dark energy density of E(D) = 95.5 percent. It is further revealed that similar conclusions could be made using A.C. Eringen’s nonlocal elasticity. Finally the wider philosophical implication of the theory is discussed. VL - 3 IS - 2 ER -