| Peer-Reviewed

The N-Point Definite Integral Approximation Formula (N-POINT DIAF)

Received: 20 November 2016     Accepted: 26 December 2016     Published: 21 February 2017
Views:       Downloads:
Abstract

Various authors have discovered formulae for numerical integration approximation. However these formulae always result to some amount of error which may differ in size depending on the formula. It’s therefore important that a formula with highest precision has been discovered and should be implemented for use in numerical integration approximations problems, especially for the definite integrals which cannot be evaluated by applying the analytical techniques. The present paper therefore explores the derivation of the N-point Definite Integral Approximation Formula (N-point DIAF) which amounts to the discovery of the 2-Point DIAF. This formula will assist in almost accurate evaluation of all definite integrals numerically. The proof of the formula is given, a specific test problem is then solved using the discovered 2-Point DIAF to obtain the solution numerically, which has the highest precision compared to other numerical methods of integration. Further the error terms are obtained and compared with the existing methods. Finally, the effectiveness of the proposed formula is illustrated by means of a numerical example.

Published in Applied and Computational Mathematics (Volume 6, Issue 1)
DOI 10.11648/j.acm.20170601.11
Page(s) 1-33
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Numerical Integration, Approximation, Definite Integrals, Error, Analytical Techniques, Stability

References
[1] Burden, R. L. and Faires, J. D., Numerical Analysis, 9th ed., Brooks/Cole, Pacific Grove, 2011. pp 193-256.
[2] C. -H. Yu, Solving some integrals with Maple, International Journal of Research in Aeronautical and Mechanical Engineering, Vol. 1, Issue. 3, pp. 29-35, 2013.
[3] Dukkipati, R. V., Numerical Methods, New Age International Publishers (P) Ltd., New Delhi, India, 2010. Pp 237-263.
[4] Gordon K. Smyth (1998), Numerical Integration, Encyclopedia of Biostatistics (ISBN 0471 975761), John Wiley & Sons, Ltd, Chichester.
[5] Gupta, C. B and Malik, A. K. (2009), Advanced Mathematics, (New Age International Publishers) Pp 90-101.
[6] Jain, M. K., S. R. K. Iyengar., and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, Sixth Edition, New Age International Publishers, (Formerly Wiley Eastern Limited), New Delhi, 2008. Pp 128-177.
[7] Jain, M. K., S. R. K. Iyengar., and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, Sixth Edition, New Age International Publishers, (Formerly Wiley Eastern Limited), New Delhi, 2012. Pp 128-177.
[8] K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons, New York, NY, USA, Second Edition, 1989.
[9] Rao, G. S. (2006), Numerical Analysis, Revised Third Edition (New Age International (P) Limited Publishers).
[10] T. Ramachandran, R. Parimala (2015), Open Newton - Cotes Quadrature With Midpoint Derivative For Integration Of Algebraic Functions, International Journal of Research in Engineering and Technology, Volume: 04 Issue: 10.
Cite This Article
  • APA Style

    Francis Oketch Ochieng’, Nicholas Muthama Mutua, Nicholas Mwilu Mutothya. (2017). The N-Point Definite Integral Approximation Formula (N-POINT DIAF). Applied and Computational Mathematics, 6(1), 1-33. https://doi.org/10.11648/j.acm.20170601.11

    Copy | Download

    ACS Style

    Francis Oketch Ochieng’; Nicholas Muthama Mutua; Nicholas Mwilu Mutothya. The N-Point Definite Integral Approximation Formula (N-POINT DIAF). Appl. Comput. Math. 2017, 6(1), 1-33. doi: 10.11648/j.acm.20170601.11

    Copy | Download

    AMA Style

    Francis Oketch Ochieng’, Nicholas Muthama Mutua, Nicholas Mwilu Mutothya. The N-Point Definite Integral Approximation Formula (N-POINT DIAF). Appl Comput Math. 2017;6(1):1-33. doi: 10.11648/j.acm.20170601.11

    Copy | Download

  • @article{10.11648/j.acm.20170601.11,
      author = {Francis Oketch Ochieng’ and Nicholas Muthama Mutua and Nicholas Mwilu Mutothya},
      title = {The N-Point Definite Integral Approximation Formula  (N-POINT DIAF)},
      journal = {Applied and Computational Mathematics},
      volume = {6},
      number = {1},
      pages = {1-33},
      doi = {10.11648/j.acm.20170601.11},
      url = {https://doi.org/10.11648/j.acm.20170601.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20170601.11},
      abstract = {Various authors have discovered formulae for numerical integration approximation. However these formulae always result to some amount of error which may differ in size depending on the formula. It’s therefore important that a formula with highest precision has been discovered and should be implemented for use in numerical integration approximations problems, especially for the definite integrals which cannot be evaluated by applying the analytical techniques. The present paper therefore explores the derivation of the N-point Definite Integral Approximation Formula (N-point DIAF) which amounts to the discovery of the 2-Point DIAF. This formula will assist in almost accurate evaluation of all definite integrals numerically. The proof of the formula is given, a specific test problem is then solved using the discovered 2-Point DIAF to obtain the solution numerically, which has the highest precision compared to other numerical methods of integration. Further the error terms are obtained and compared with the existing methods. Finally, the effectiveness of the proposed formula is illustrated by means of a numerical example.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The N-Point Definite Integral Approximation Formula  (N-POINT DIAF)
    AU  - Francis Oketch Ochieng’
    AU  - Nicholas Muthama Mutua
    AU  - Nicholas Mwilu Mutothya
    Y1  - 2017/02/21
    PY  - 2017
    N1  - https://doi.org/10.11648/j.acm.20170601.11
    DO  - 10.11648/j.acm.20170601.11
    T2  - Applied and Computational Mathematics
    JF  - Applied and Computational Mathematics
    JO  - Applied and Computational Mathematics
    SP  - 1
    EP  - 33
    PB  - Science Publishing Group
    SN  - 2328-5613
    UR  - https://doi.org/10.11648/j.acm.20170601.11
    AB  - Various authors have discovered formulae for numerical integration approximation. However these formulae always result to some amount of error which may differ in size depending on the formula. It’s therefore important that a formula with highest precision has been discovered and should be implemented for use in numerical integration approximations problems, especially for the definite integrals which cannot be evaluated by applying the analytical techniques. The present paper therefore explores the derivation of the N-point Definite Integral Approximation Formula (N-point DIAF) which amounts to the discovery of the 2-Point DIAF. This formula will assist in almost accurate evaluation of all definite integrals numerically. The proof of the formula is given, a specific test problem is then solved using the discovered 2-Point DIAF to obtain the solution numerically, which has the highest precision compared to other numerical methods of integration. Further the error terms are obtained and compared with the existing methods. Finally, the effectiveness of the proposed formula is illustrated by means of a numerical example.
    VL  - 6
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Mathematics and Informatics Department, Taita Taveta University, Voi, Kenya

  • Mathematics and Informatics Department, Taita Taveta University, Voi, Kenya

  • Mathematics and Informatics Department, Taita Taveta University, Voi, Kenya

  • Sections